asyncpg Usage
The interaction with the database normally starts with a call to
connect()
, which establishes
a new database session and returns a new
Connection
instance,
which provides methods to run queries and manage transactions.
import asyncio
import asyncpg
import datetime
async def main():
# Establish a connection to an existing database named "test"
# as a "postgres" user.
conn = await asyncpg.connect('postgresql://postgres@localhost/test')
# Execute a statement to create a new table.
await conn.execute('''
CREATE TABLE users(
id serial PRIMARY KEY,
name text,
dob date
)
''')
# Insert a record into the created table.
await conn.execute('''
INSERT INTO users(name, dob) VALUES($1, $2)
''', 'Bob', datetime.date(1984, 3, 1))
# Select a row from the table.
row = await conn.fetchrow(
'SELECT * FROM users WHERE name = $1', 'Bob')
# *row* now contains
# asyncpg.Record(id=1, name='Bob', dob=datetime.date(1984, 3, 1))
# Close the connection.
await conn.close()
asyncio.run(main())
Note
asyncpg uses the native PostgreSQL syntax for query arguments: $n
.
Type Conversion
asyncpg automatically converts PostgreSQL types to the corresponding Python types and vice versa. All standard data types are supported out of the box, including arrays, composite types, range types, enumerations and any combination of them. It is possible to supply codecs for non-standard types or override standard codecs. See Custom Type Conversions for more information.
The table below shows the correspondence between PostgreSQL and Python types.
PostgreSQL Type |
Python Type |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
offset-naïve |
|
offset-aware |
|
offset-naïve |
|
offset-aware |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
All other types are encoded and decoded as text by default.
Custom Type Conversions
asyncpg allows defining custom type conversion functions both for standard
and user-defined types using the Connection.set_type_codec()
and
Connection.set_builtin_type_codec()
methods.
Example: automatic JSON conversion
The example below shows how to configure asyncpg to encode and decode
JSON values using the json
module.
import asyncio
import asyncpg
import json
async def main():
conn = await asyncpg.connect()
try:
await conn.set_type_codec(
'json',
encoder=json.dumps,
decoder=json.loads,
schema='pg_catalog'
)
data = {'foo': 'bar', 'spam': 1}
res = await conn.fetchval('SELECT $1::json', data)
finally:
await conn.close()
asyncio.run(main())
Example: complex types
The example below shows how to configure asyncpg to encode and decode
Python complex
values to a custom composite
type in PostgreSQL.
import asyncio
import asyncpg
async def main():
conn = await asyncpg.connect()
try:
await conn.execute(
'''
CREATE TYPE mycomplex AS (
r float,
i float
);'''
)
await conn.set_type_codec(
'complex',
encoder=lambda x: (x.real, x.imag),
decoder=lambda t: complex(t[0], t[1]),
format='tuple',
)
res = await conn.fetchval('SELECT $1::mycomplex', (1+2j))
finally:
await conn.close()
asyncio.run(main())
Example: automatic conversion of PostGIS types
The example below shows how to configure asyncpg to encode and decode
the PostGIS geometry
type. It works for any Python object that
conforms to the geo interface specification and relies on Shapely,
although any library that supports reading and writing the WKB format
will work.
import asyncio
import asyncpg
import shapely.geometry
import shapely.wkb
from shapely.geometry.base import BaseGeometry
async def main():
conn = await asyncpg.connect()
try:
def encode_geometry(geometry):
if not hasattr(geometry, '__geo_interface__'):
raise TypeError('{g} does not conform to '
'the geo interface'.format(g=geometry))
shape = shapely.geometry.shape(geometry)
return shapely.wkb.dumps(shape)
def decode_geometry(wkb):
return shapely.wkb.loads(wkb)
await conn.set_type_codec(
'geometry', # also works for 'geography'
encoder=encode_geometry,
decoder=decode_geometry,
format='binary',
)
data = shapely.geometry.Point(-73.985661, 40.748447)
res = await conn.fetchrow(
'''SELECT 'Empire State Building' AS name,
$1::geometry AS coordinates
''',
data)
print(res)
finally:
await conn.close()
asyncio.run(main())
Example: decoding numeric columns as floats
By default asyncpg decodes numeric columns as Python
Decimal
instances. The example below
shows how to instruct asyncpg to use floats instead.
import asyncio
import asyncpg
async def main():
conn = await asyncpg.connect()
try:
await conn.set_type_codec(
'numeric', encoder=str, decoder=float,
schema='pg_catalog', format='text'
)
res = await conn.fetchval("SELECT $1::numeric", 11.123)
print(res, type(res))
finally:
await conn.close()
asyncio.run(main())
Example: decoding hstore values
hstore is an extension data type used for storing key/value pairs.
asyncpg includes a codec to decode and encode hstore values as dict
objects. Because hstore
is not a builtin type, the codec must
be registered on a connection using Connection.set_builtin_type_codec()
:
import asyncpg
import asyncio
async def run():
conn = await asyncpg.connect()
# Assuming the hstore extension exists in the public schema.
await conn.set_builtin_type_codec(
'hstore', codec_name='pg_contrib.hstore')
result = await conn.fetchval("SELECT 'a=>1,b=>2,c=>NULL'::hstore")
assert result == {'a': '1', 'b': '2', 'c': None}
asyncio.run(run())
Transactions
To create transactions, the
Connection.transaction()
method
should be used.
The most common way to use transactions is through an async with
statement:
async with connection.transaction():
await connection.execute("INSERT INTO mytable VALUES(1, 2, 3)")
Note
When not in an explicit transaction block, any changes to the database will be applied immediately. This is also known as auto-commit.
See the Transactions API documentation for more information.
Connection Pools
For server-type type applications, that handle frequent requests and need the database connection for a short period time while handling a request, the use of a connection pool is recommended. asyncpg provides an advanced pool implementation, which eliminates the need to use an external connection pooler such as PgBouncer.
To create a connection pool, use the
asyncpg.create_pool()
function.
The resulting Pool
object can then be used
to borrow connections from the pool.
Below is an example of how asyncpg can be used to implement a simple Web service that computes the requested power of two.
import asyncio
import asyncpg
from aiohttp import web
async def handle(request):
"""Handle incoming requests."""
pool = request.app['pool']
power = int(request.match_info.get('power', 10))
# Take a connection from the pool.
async with pool.acquire() as connection:
# Open a transaction.
async with connection.transaction():
# Run the query passing the request argument.
result = await connection.fetchval('select 2 ^ $1', power)
return web.Response(
text="2 ^ {} is {}".format(power, result))
async def init_db(app):
"""Initialize a connection pool."""
app['pool'] = await asyncpg.create_pool(database='postgres',
user='postgres')
yield
await app['pool'].close()
def init_app():
"""Initialize the application server."""
app = web.Application()
# Create a database context
app.cleanup_ctx.append(init_db)
# Configure service routes
app.router.add_route('GET', '/{power:\d+}', handle)
app.router.add_route('GET', '/', handle)
return app
app = init_app()
web.run_app(app)
See Connection Pools API documentation for more information.